Oxidation of the zwitterionic tungsten amide (OC)₅WNPhNPhC(OMe)Ph with Br₂ and PCl₅. Formation of [(PhN)W(CO)₂X₂]₂ and (PhN)W(CO)₂X₂L (X = Br or Cl; L = MeCN, Me₃C₆H₂NH₂ and *i*-BuNH₂)

Yingxia He, Patrick C. McGowan, Khalil A. Abboud and Lisa McElwee-White*

Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

Received 27th May 1998, Accepted 30th July 1998

Oxidation of the zwitterionic tungsten amide (OC)₅WNPhNPhC(OMe)Ph 1 with Br₂ or PCl₅ produced [(PhN)W(CO)₂X₂]₂ (X = Cl or Br). These halide-bridged tungsten(tv) dimers reacted with MeCN to give the mononuclear complexes (PhN)W(CO)₂X₂(MeCN) (X = Cl or Br). The latter complexes can also be obtained directly in high yield by oxidizing 1 in the presence of MeCN. The acetonitrile ligand can be substituted with Me₃C₆H₂NH₂ or *i*-BuNH₂ to yield (PhN)W(CO)₂X₂L (X = Cl or Br, L = Me₃C₆H₂NH₂ or *i*-BuNH₂) or with PMe₃ to produce (PhN)W(CO)Br₂(PMe₃)₂. The oxidation of 1 with BrI resulted in the formation of [(PhN)W(CO)₂Br(I)]₂, which reacts with MeCN to produce (PhN)W(CO)₂Br(I)(MeCN). The structures of the dimers [(PhN)W(CO)₂X₂]₂ were determined by X-ray crystallography.

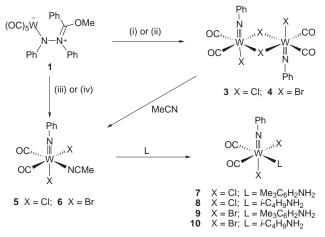
Introduction

Synthetic routes involving amido ligands have become important in the preparation of imido complexes.¹ Although imido moieties can be generated in a variety of ways,^{1,2} utilization of a preexisting metal–nitrogen bond is often very convenient. This strategy has proven to be particularly successful in the preparation of low-valent imido complexes, which can be difficult targets. As an example, abstraction of either a hydride or a proton has been used to generate low-valent imido complexes of the type $Tp'(OC)_2W=NR^+$ [Tp' = hydridotris(3,5-dimethylpyrazolyl)borate] from the corresponding amido complexes.³

We have previously reported use of the zwitterionic amido complex (OC)₅WNPhNPhC(OMe)Ph 1⁴ as a precursor to tungsten imido complexes in a variety of oxidation states. Cleavage of 1 under non-oxidative conditions generates the tungsten(0) complex (OC)₅W=NPh as a reactive intermediate,⁵ while oxidation of 1 with I₂ produces imido complexes of W^{IV} or W^{V1.6} Of particular interest is the dimeric complex [(PhN)-W(CO)₂I₂I₂ 2 [eqn. (1)] which results from reaction of 1 with 1

$$(OC)_{5}\bar{W} \xrightarrow{Ph} OMe \xrightarrow{I equivalent I_{2}} \frac{1}{2} OC \xrightarrow{V} I \xrightarrow{I} OMe \xrightarrow{N-N+} OC \xrightarrow{I equivalent I_{2}} \frac{1}{2} OC \xrightarrow{V} I \xrightarrow{V} OC \xrightarrow{W} OC \xrightarrow{V} OMe \xrightarrow{V} O$$

equivalent of I₂. Iodo-bridged dimer **2** is both a stoichiometric reagent^{7a} and a catalyst^{7b} for the carbonylation of primary amines to ureas. In addition, complexes of the type (PhN)-W(CO)₂I₂L, which can be produced by reaction of **2** with twoelectron donor ligands L, show promise as precursors for the chemical vapor deposition of tungsten nitride thin films.⁸ The exploration of these applications led us to prepare derivatives containing chloride and bromide ligands.


We now report the oxidation of zwitterion 1 with Br₂ or PCl₅ to yield the halide-bridged dimers [(PhN)W(CO)₂X₂]₂ (X = Cl 3 or Br 4). In parallel with the chemistry of iodide complex 2, derivatives of the type (PhN)W(CO)₂X₂L can be prepared from dimers 3 and 4. In addition, when the oxidation of 1 is carried out in the presence of MeCN, the acetonitrile complexes (PhN)W(CO)₂X₂(MeCN) (X = Cl 5 or Br 6) can be obtained

directly in more than 80% yield. The MeCN ligand can easily be substituted with amines to provide the series of complexes $(PhN)W(CO)_2X_2L$.

Results and discussion

Oxidation of (OC)₅WNPhNPhC(OMe)Ph 1 with PCl₅

Reaction of complex 1 with PCl_5 in diethyl ether at 0 °C resulted in precipitation of a red solid after about 25 min. Isolation of the solid by filtration afforded the Cl-bridged dimer 3 in 63% yield (Scheme 1). When the reaction mixture was

Scheme 1 (i) PCl₅, ether, 0 °C; (ii) Br₂, CH₂Cl₂, ether, -78 °C; (iii) PCl₅, MeCN, ether, 0 °C; (iv) Br₂, MeCN, ether, 0 °C.

allowed to stir for more than 3 h dimer **3** began to decompose into an insoluble blue-black solid which was not characterized. Although chlorination with PCl_5 was successful, reaction of **1** with Cl_2 did not result in formation of **3**. It is possible that the limited solubility of both PCl_5 and dimer **3** in ether at 0 °C allowed **3** to form and precipitate before further chlorination could occur.

Spectroscopic data for compound **3** can be found in Tables 1–3. The carbonyl bands (2084, 2016 cm⁻¹) appear at higher wavenumbers than those of its iodide analogue **2**, consistent

J. Chem. Soc., Dalton Trans., 1998, 3373–3378 3373

with the poorer electron donation from the chloride ligands vs. iodide. This effect is also evident in the 13 C NMR signals for the carbonyl carbons in dimers 2 and 3, where the chloride dimer 3 appears downfield of iodide 2.

Oxidation of (OC)₅WNPhNPhC(OMe)Ph 1 with Br₂ and PBr₅

In contrast to the well behaved reactions of compound 1 with PCl₅ and I₂, preparation of the analogous bromide dimer 4 proved problematic. When 1 was treated with 1 equivalent of Br₂-CH₂Cl₂ solution at -78 °C in ether containing a small amount of CH₂Cl₂ no reaction occurred initially. However, upon warming to -40 °C, the solution changed from black to dark red and a dark red sticky solid formed over the course of 2 h. The sticky solid contained dimer 4 and unstable material, which decomposed during the work-up. Purification of the crude product afforded clean 4 in 13% yield (Scheme 1). The spectroscopic data were similar to those for chloride dimer 3 and are summarized in Tables 1–3. Efforts to optimize the conditions using other solvents (CH₂Cl₂ or hexane) and altered reaction conditions were unsuccessful.

Given that the presence of an excess of I_2 during oxidation of compound 1 to 2 leads to overoxidation and formation of the tungsten(vI) metallacycle I_3 (PhN)W(NPhCPhO), it seemed likely that the more strongly oxidizing Br_2 could also be causing overoxidation. In order to ensure low concentrations of Br_2 , PBr₅ was used as a Br_2 equivalent. Reaction of 1 with PBr₅ in ether at 0 °C over 2 h afforded a red solution and a dark red sticky solid. Dimer 4 was isolated from the sticky solid in 25% yield. Once again the timing of the reaction was critical. Upon

Table 1 Infrared and ¹³C NMR data for carbonyl ligands.

Complex	$\begin{array}{l} \tilde{\nu}(CO) \\ (CH_2Cl_2)/cm^{-1} \end{array}$	13 C NMR, δ (CDCl ₃ , 20 °C)
$\frac{1}{2 \left[(PhN)W(CO)_2 I_2 \right]_2^a}$	2068, 2007	202.7
$4 [(PhN)W(CO)_2Br_2]_2$	2080, 2012	208.3 ^b
$3 [(PhN)W(CO)_{2}Cl_{2}]_{2}$	2084, 2016	210.4 ^b
$[(PhN)W(CO)_2Br(I)]_2$	2080, 2017	207.7
(PhN)W(CO) ₂ I ₂ (MeCN) ^a	2072, 2003	206.4, 203.0
6 (PhN)W(CO),Br ₂ (MeCN)	2078, 2005	208.9, 207.1
5 (PhN)W(CO), Cl, (MeCN)	2081, 2013	212.3, 210.4 ^b
(PhN)W(CO) ₂ Br(I)(MeCN)	2087, 2011	207.0, 204.2
$(PhN)W(CO)_{2}I_{2}(Me_{3}C_{6}H_{2}NH_{2})^{a}$	2064, 1984	209.1, 207.2
$9 (PhN)W(CO)_2Br_2(Me_3C_6H_2NH_2)$	2076, 1995	211.9, 211.6
7 (PhN)W(CO) ₂ Cl ₂ (Me ₃ C ₆ H ₂ NH ₂)	2087, 2011	213.7, 212.4
10 (PhN)W(CO), $Br_2(i-C_4H_9NH_2)$	2076, 1988	213.8, 211.3 ^b
8 (PhN)W(CO) ₂ Cl ₂ (i -C ₄ H ₉ NH ₂)	2078, 1993	216.0, 211.6
(PhN)W(CO)Br ₂ (PMe ₃) ₂	1953	241.9 ^{<i>b</i>}
^{<i>a</i>} Data taken from ref. 6(<i>b</i>). ^{<i>b</i>} Spectru	ım obtained in Cl	D_2Cl_2 .

Table 2 Proton and ¹³C NMR data (δ , *J*/Hz) for phenyl groups.

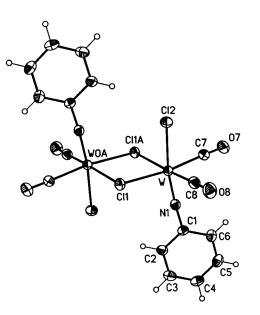
stirring the reaction mixture for 4 h dimer 4 decomposed into intractable material. Further attempts to optimize the reaction conditions using PBr_5 were also unsuccessful.

Oxidation of (OC)₅WNPhNPhC(OMe)Ph 1 with BrI

Upon addition of $BrI-CH_2Cl_2$ solution to an ether solution of compound 1 at room temperature immediate reaction occurred. The solution changed from black to greenish, then dark red, and red solid began to precipitate within 10 min. After 2 h of stirring a red solution containing an orange-red solid had formed. Isolation of the solid yielded the dimer [(PhN)-W(CO)_2Br(I)]_2 as the major product. As expected,⁹ formation of this mixed bromide–iodide complex predominated. However, the reaction mixtures also contained trace amounts of the iodide dimer 2 and the bromide dimer 4, which presumably arise due to the equilibrium between BrI and $Br_2 + I_2$.¹⁰ The three dimers exhibited clear differences in their solubilities, with 2 being the most soluble and 4 the least. The insolubility of 4 allowed crystals to be grown from solutions in which [(PhN)W(CO)_2Br(I)]_2 was the major component.

Crystal structures of dimers 3 and 4

The chloride- and bromide-containing complexes [(PhN)W- $(CO)_2X_2]_2$ and $(PhN)W(CO)_2X_2L$ are rare examples of d² imido complexes bearing two π -acid ligands^{3,6} and as such could provide insight into the problem of accommodating both strongly π -donating imido and π -acid carbonyl ligands on the same metal center. Prior studies on d² imido complexes bearing a single π -acid ligand have been interpreted in terms of electron donation from the imido ligand into two empty d orbitals in conjunction with back donation of the two d electrons into the empty orbitals of the π acid.¹¹ For compounds with multiple π acids, such as the [(PhN)W(CO)₂X₂]₂ and (PhN)W(CO)₂X₂L series, back donation will be affected by competition for the two d electrons. In the chloride and bromide derivatives, which will be less electron rich at the metal than iodide-containing dimer 2, the already weak back bonding should be even less potent. This effect can be detected in the variation of carbonyl stretching frequencies as the halide is changed (Table 1). In order to see if it would also be detectable in the structures of the complexes, a crystallographic study of dimers 3 and 4 was carried out for comparison to iodide dimer 2, whose structure was published previously.6a


The structures of complexes 3 and 4 appear in Figs. 1 and 2, respectively. Selected bond lengths and angles can be found in Table 4. As is also observed for iodide dimer 2, the tungsten centers are octahedral and bear triply bonded imido ligands [W–N1 1.757(4) Å for 3; 1.757(10) for 4]. Within experimental error, the W–C bond lengths are the same for dimers 2 [2.051(14), 2.022(13) Å], 3 [2.043(5), 2.040(5) Å] and 4 [2.051(13), 2.029(13) Å]. The C–O bond lengths within the carbonyls are also indistinguishable in the three dimers. There is

Complex	¹ H NMR, δ (CDCl ₃), C ₆ H ₅	¹³ C NMR, δ (CDCl ₃ , 20 °C)
3*	7.48 (t, 4 H), 7.42 (m, 2 H), 7.08 (t, 4 H)	154.2, 129.4, 128.5, 125.9
5*	7.59 (m, 1 H), 7.37 (d, $J = 8, 2$ H), 7.30 (t, 2 H)	153.9, 139.0, 129.4, 126.9
7	7.27 (m, 1 H), 7.16 (t, 2 H), 6.64 (d, $J = 8, 2$ H)	152.7, 138.0, 129.7, 126.6
8	7.34 (t, 2 H), 7.29 (m, 1 H), 7.22 (d, $J = 8, 2$ H)	153.4, 129.2, 128.8, 126.3
4	7.58 (d, $J = 8, 4$ H), 7.39 (t, 4 H), 7.23 (m, 2 H)	154.6, 130.2, 129.5, 127.8
6	7.42 (m, 1 H), 7.31 (d, $J = 7, 2$ H), 7.22 (t, 2 H)	153.5, 132.2, 129.2, 126.0
9*	7.35 (t, 1 H), 7.18 (t, 2 H), 6.72 (d, $J = 8, 2$ H)	153.1, 138.9, 129.5, 126.3
10*	7.44 (m, 1 H), 7.33 (t, 2 H), 7.28 (t, 2 H)	153.9, 129.7, 129.4, 126.2
(PhN)W(CO)Br ₂ (PMe ₃) ₂ *	7.51 (m, 2 H), 7.29 (m, 1 H), 7.14 (t, 2 H)	154.9, 129.3, 127.3, 124.9
[(PhN)W(CO) ₂ Br(I)] ₂	7.61 (m, 4 H), 7.50 (m, 2 H), 7.37 (m, 4 H)	153.8, 129.9, 129.3, 127.1
(PhN)W(CO) ₂ Br(I)(MeCN)	7.67–7.32 (m, 5 H)	153.4, 129.1, 126.0, 125.6

Table 3	Proton and	¹³ C NMR	data (δ	, <i>J</i> /Hz)	for	ancillary	ligands.
---------	------------	---------------------	-----------------	-----------------	-----	-----------	----------

		$\delta(\text{CDCl}_3, 20 ^{\circ}\text{C})$		
Complex	Ligand	¹ H NMR	¹³ C NMR	
5 ^{<i>a</i>}	MeCN	2.68 (s, 3 H, CH ₃ CN)	129.2, (CH ₃ CN), 4.7 (CH ₃ CN)	
7	NH ₂ C ₆ H ₂ Me ₃	6.81 (s, 2 H, C_6H_2) 6.30 (d, $J = 12$, 1 H, NH ₂) 5.57 (d, $J = 12$, 1 H, NH ₂) 2.42 (s, 6 H, CH ₃) 2.28 (s, 3 H, CH ₃)	135.1, 128.8, 128.6, 127.1 (C ₆ H ₂), 20.5, 18.0 (CH ₃ C ₆ H ₂)	
8	MeCHCH ₂ Me	4.23 (dd, 1 H, NH ₂)	56.5 (H ₂ N <i>C</i> H)	
		3.77 (dd, 1 H, NH ₂)	$31.7 (H_2 NCH CH_3)$	
	NH,	3.33 (m, 1 H, CH)	$21.5 (H_2 NCH CH_2)$	
	-	1.64 (m, 2 H, CH ₂)	$10.0 (CHCH_2CH_3)$	
		1.33 (t, 3 H, CH ₃)		
		0.99 (t, 3 H, CH ₃)		
6	MeCN	2.75 (s, 3 H, CH ₃ CN)	125.3 (CH ₃ CN), 5.1 (CH ₃ CN)	
9	NH ₂ C ₆ H ₂ Me ₃	6.85 (s, 2 H, C ₆ H ₂) 6.32 (d, $J = 11, 1$ H, NH ₂) 5.55 (d, $J = 12, 1$ H, NH ₂) 2.42 (s, 6 H, CH ₃ C ₆ H ₂) 2.26 (s, 3 H, CH ₃ C ₆ H ₂) ^{<i>a</i>}	135.7, 130.1, 129.9, 129.2 (C ₆ H ₂), 20.6, 18.5 (CH ₃ C ₆ H ₂)	
10 ^{<i>a</i>}	MeCHCH ₂ Me	4.27 (dd, 1 H, NH ₂)	57.8 (H ₂ N <i>C</i> H)	
		3.88 (dd, 1 H, NH ₂)	$32.1 (H_2 NCHCH_3)$	
	NH_2	3.38 (m, 1 H, CH)	$21.7 (H_2 NCHCH_2)$	
		1.64 (m, 2 H, CH_2) 1.32 (t, 3 H, CH_3) 1.00 (t, 3 H, CH_3)	10.2 (CHCH ₂ CH ₃)	
a,b	PMe ₃	1.74 (t, 18 H, PMe ₃)	16.4 [t, P(CH ₃) ₃]	
c	MeCN	2.78 (s, 3 H, CH ₃ CN)	124.9 (CH ₃ CN), 4.9 (CH ₃ CN)	

^{*a*} Spectrum obtained in CD₂Cl₂. ^{*b*} Complex (PhN)W(CO)Br₂(PMe₃)₂: ³¹P NMR (CD₂Cl₂) δ -26.0 (t, J_{WP} = 285.0 Hz, PMe₃). ^{*c*} (PhN)W(CO)₂-Br(I)(MeCN).

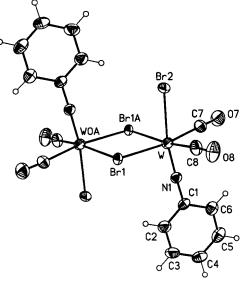


Fig. 1 Thermal ellipsoid diagram of $[({\rm PhN})W({\rm CO})_2{\rm Cl}_2]_2$ 3 showing the crystallographic numbering scheme.

thus no structural evidence for variation in the back bonding to the carbonyl ligands as the halide ligands are changed. The W– X bond distances in **3** [terminal 2.4349(12); bridging 2.4991(12) Å] and **4** [terminal 2.6729(13); bridging 2.7204(11) Å] fall within the normal ranges.¹² The structural differences in the W₂X₂ cores of the dimers can be attributed to the variation in W–X bond lengths as X is varied.

Reactions of dimers 3, 4 and $\left[(PhN)W(CO)_2Br(I)\right]_2$ with donor ligands

When dimers **3** and **4** are dissolved in MeCN dissociation and solvent co-ordination result in formation of the acetonitrile complexes $(PhN)W(CO)_2Cl_2(MeCN)$ **5** and $(PhN)W(CO)_2Br_2$ -

Fig. 2 Thermal ellipsoid diagram $[(PhN)W(CO)_2Br_2]_2$ 4 showing the crystallographic numbering scheme.

(MeCN) **6**, respectively. Similar behavior has been reported for iodide dimer **2**.⁶ Reaction of the mixed bromide–iodide dimer [(PhN)W(CO)₂Br(I)]₂ with MeCN overnight yielded only the mixed halide complex (PhN)W(CO)₂Br(I)(Me₃CN). Neither (PhN)W(CO)₂I₂(MeCN) nor (PhN)W(CO)₂Br₂(MeCN) **6** were produced from [(PhN)W(CO)₂Br(I)]₂. This result suggests that the bridging halides in the latter are either both iodide or both bromide. We have no experimental evidence to distinguish between the possibilities, as X-ray quality crystals could not be obtained. However, the precedent from molecules such as [Mo(μ -I)Br(CO)₃(PPh₃)]₂⁹ suggests that iodide bridging would be preferred.

Reaction of bromide dimer 4 with an excess of PMe_3 in CH_2Cl_2 results in formation of the bis(PMe_3) complex (PhN)-

J. Chem. Soc., Dalton Trans., 1998, 3373–3378 3375

Table 4Selected bond lengths (Å) and angles (°) for complexes 3 and 4.

Complex 3		Complex 4	Complex 4		
W-N1	1.757(4)	W-N1	1.757(10)		
W–C7	2.043(5)	W–C7	2.051(13)		
W–C8	2.040(5)	W–C8	2.029(13)		
W-Cl2	2.4349(12)	W–Br2	2.6729(13)		
W-Cl1	2.4991(12)	W-Br1	2.7204(11)		
W-Cl1A	2.5085(12)	W-Br1A	2.7318(11)		
N1-C1	1.387(6)	N1-C1	1.37(2)		
C7–O8	1.131(7)	O7–C7	1.12(2)		
C8–O8	1.125(7)	O8–C8	1.14(2)		
N1-W-C8	89.3(2)	N1-W-C8	91.4(5)		
N1-W-C7	90.0(2)	N1-W-C7	91.3(5)		
C7–W–C8	89.0(2)	C8–W–C7	89.3(5)		
N1-W-Cl2	170.99(13)	N1–W–Br2	170.2(3)		
C8-W-C12	83.8(2)	C8–W–Br2	81.4(4)		
C7-W-Cl2	84.2(2)	C7–W–Br2	82.1(4)		
N1-W-Cl1	96.77(13)	N1-W-Br1	96.8(3)		
C8-W-Cl1	94.4(2)	C8–W–Br1	93.2(4)		
C7-W-Cl1	172.5(2)	C7–W–Br1	171.5(4)		
Cl2-W-Cl1	89.54(4)	Br2-W-Br1	90.25(4)		
N1-W-Cl1A	98.65(13)	N1–W–Br1A	98.3(3)		
C8–W–Cl1A	170.92(14)	C8–W–Br1A	169.9(4)		
C7–W–Cl1A	95.3(2)	C7–W–Br1A	93.2(4)		
Cl2-W-Cl1A	88.72(4)	Br2–W–Br1A	89.26(4)		
Cl1-W-Cl1A	80.35(4)	Br1-W-Br1A	82.92(3)		
W-Cl1-W0A	99.65(4)	W-Br1-W0A	97.08(3)		
C1-N1-W	174.9(3)	C1–N1–W	177.1(9)		
N1-C1-C2	118.5(4)	N1-C1-C2	120.0(12)		
N1-C1-C6	120.3(4)	N1-C1-C6	119.2(11)		
O8–C8–W	178.4(5)	O7–C7–W	177.0(13)		
O7–C7–W	178.0(5)	O8–C8–W	177.3(13)		

W(CO)Br₂(PMe₃)₂. As is also observed for the chemistry of iodide dimer 2,⁶ one of the CO ligands is replaced by the more strongly nucleophilic PMe₃. The ³¹P NMR spectrum exhibits a signal at δ –26.0 for PMe₃. The signal is shifted downfield with respect to its iodide analogue (PhN)W(CO)I₂(PMe₃)₂ (δ –38.8) as expected for the more electron poor bromide complex.

Oxidation of (OC)₅WNPhNPhC(OMe)Ph 1 with Br_2 and PCl_5 in the presence of MeCN

Although acetonitrile complexes **5** and **6** are accessible *via* reaction of dimers **3** and **4** with MeCN, poor yields during the dimer syntheses result in low overall yields for **5** and **6**. Therefore, more direct routes to them were developed. Oxidation of zwitterion **1** with Br₂ in the presence of MeCN at -78 °C resulted in formation of a red solution containing a red precipitate of MeCN complex **6**. Simple filtration and washing of the solid afforded 81% yield. A similar protocol involving oxidation of **1** with PCl₅ in the presence of MeCN at 0 °C produced complex **5** in 88% yield. Clearly, the yields of MeCN complexes obtained upon oxidation in the presence of a co-ordinating solvent are much higher than the yields of dimer obtained in non-co-ordinating solvents. This effect can be attributed to trapping of the unsaturated intermediate [X₂(OC)₂W(NPh)] before side reactions can compete with dimerization.

Substitution of the MeCN ligand in $(PhN)W(CO)_2X_2(MeCN)$ with $Me_3C_6H_2NH_2$ and *i*-BuNH₂

Since MeCN complexes **5** and **6** were readily available we explored substitution of the acetonitrile ligand as a means of generating derivatives. The hindered arylamine 2,4,6-Me₃C₆-H₂NH₂ had been demonstrated to serve as a ligand in the iodide system, where the amine was treated with dimer **2** to generate (PhN)W(CO)₂I₂(Me₃C₆H₂NH₂).^{6b} Treatment of **5** and **6** with 1 equivalent of Me₃C₆H₂NH₂ in CH₂Cl₂ solution results in the

formation of the $Me_3C_6H_2NH_2$ complexes 7 and 9 (Scheme 1) within 2 h. The IR spectrum of 9 exhibited two CO bands at 2076 and 1995 cm⁻¹, while the two CO bands for 7 appeared at 2087 and 2011 cm⁻¹. These values are higher than the corresponding 2064 and 1984 cm⁻¹ for the iodide derivative, consistent with the weakening of electron donation to the metal upon proceeding from iodide to bromide to chloride.

Similarly, reaction of compounds **5** and **6** with 1 equivalent of *i*-BuNH₂ in CH₂Cl₂ solution yielded the *i*-BuNH₂ complexes **8** and **10**. Owing to the chirality of the metal center and the amine a mixture of diastereomers was obtained. This was reflected in the ¹H NMR spectra, which exhibited broad multiplets at δ 1.64 for the CH₂ group next to the chiral carbon. In addition the ¹³C NMR spectra contained two sets of carbon signals for the isobutyl groups of the diastereomers. The reported data (Tables 1–3) correspond to the major isomers.

Conclusion

Oxidation of the zwitterionic amide complex $(OC)_5$ WNPhN-PhC(OMe)Ph 1 with Br₂ and PCl₅ at low temperature in ether solution results in formation of the dimeric complexes [(PhN)-W(CO)₂X₂]₂ (X = Cl; **3** or Br **4**). These dimers are congeners of the previously reported iodo-bridged dimer **2**, but are more reactive than it due to the poorer bridging ability of Br and Cl. Reaction of them with two-electron donor ligands L produces complexes of the type (PhN)W(CO)₂X₂L. When oxidation of **1** with Br₂ and PCl₅ is conducted in the presence of the co-ordinating solvent MeCN, the mononuclear complexes (PhN)W(CO)₂X₂(MeCN) (X = Cl **5** or Br **6**) are obtained directly in more than 80% yield. The MeCN ligand in complexes **5** and **6** can easily be replaced with amines such as Me₃C₆H₂NH₂ and *i*-BuNH₂.

Experimental

General

Standard inert atmosphere techniques were used throughout. Hexane, acetonitrile and methylene chloride were distilled from CaH₂, diethyl ether and THF from Na/Ph₂CO. The NMR solvents were degassed by three freeze–pump–thaw cycles and stored over 3 Å molecular sieves in a dry-box. Iodine monobromide was purchased from Aldrich as a 1.0 M solution in CH₂Cl₂ and used as received. All other reagents were purchased in reagent grade and used without further purification. The ¹H, ¹³C and ³¹P NMR spectra were recorded on Gemini-300 or VXR-300 spectrometers, IR spectra on a Perkin-Elmer 1600 spectrometer. High resolution mass spectrometry was performed by the University of Florida analytical service. Elemental analyses were performed by Robertson Microlit Laboratories, Madison, NJ.

Syntheses

[(PhN)W(CO)₂Cl₂]₂ 3. Zwitterion 1 (1.3 g, 2.1 mmol) and PCl₅ (432.5 mg, 2.08 mmol) were placed in a Schlenk vessel and cooled to 0 °C. Diethyl ether (25 mL) and 4 mL of CH₂Cl₂ were added *via* syringe. After 25 min a red solid began to form. The solution was stirred at 0 °C for 1.5 h. The solvent was removed by cannulation and the solid washed with ether (5 mL × 3) to yield complex **3** as an orange-red solid. Yield 524 mg, 62.7% (Found: C, 23.62; H, 1.29; N, 3.75. Calc. for C₈H₅Cl₂NO₂W: C, 23.91; H, 1.25; N, 3.48%).

 $(PhN)W(CO)_2Cl_2(MeCN)$ 5. Zwitterion 1 (1.37 g, 2.19 mmol) and PCl₅ (456 mg, 2.19 mmol) were placed in a Schlenk vessel and cooled to 0 °C. Ether (15 mL) was added, then 3 mL of MeCN were added within 5 min. A vigorous reaction occurred upon addition of MeCN, as evidenced by a change

from black to dark red. The reaction mixture was stirred for 1.5 h at 0 °C followed by 0.5 h at room temperature, during which a purple-red solid formed. The solvent was removed by cannulation and the solid washed with ether (5 mL × 3) to yield complex **5** as a purple-red solid. Yield 852 mg, 87.8% (Found: C, 27.28; H, 1.67; N, 6.19. Calc. for $C_{10}H_8Cl_2N_2W$: C, 27.12; H, 1.82; N, 6.33%).

(PhN)W(CO)₂Cl₂(Me₃C₆H₂NH₂) 7. Complex 5 (317 mg, 0.59 mmol) was dissolved in 8 mL of CH₂Cl₂ and Me₃C₆H₂NH₂ (105.5 μ L, 0.59 mmol) was added *via* syringe. The solution was stirred at room temperature for 2 h, during which the solution changed from purple-red to bright red. The solvent was removed under vacuum and the residue extracted with 10 mL of ether. Removal of the ether *via* vacuum yielded pure 7 as a red powder. Yield 282 mg, 89% (Found: C, 38.31; H, 3.49; N, 5.16. Calc. for C₁₇H₁₈Cl₂N₂O₂W: C, 38.02; H, 3.38; N, 5.22%).

(PhN)W(CO)₂Cl₂(*i*-C₄H₉NH₂) 8. Complex 5 (237.5 mg, 0.54 mmol) was dissolved in 8 mL of CH₂Cl₂ and *i*-C₄H₉NH₂ (56 μ L, 0.54 mmol) was added *via* syringe. The solution was stirred for 2 h, then the solvent was removed under vacuum. The residue was extracted with ether–hexane (5:1) to yield a red solution from which complex 8 was obtained as a red powder upon evaporation of the solvent. Yield 184 mg, 71.7% (Found: C, 30.57; H, 3.64; N, 6.13. Calc. for C₁₂H₁₆Cl₂N₂O₂W: C, 30.34; H, 3.40; N, 5.90%).

[(PhN)W(CO)₂Br₂]₂ 4. Zwitterion 1 (1.95 g, 3.12 mmol) was dissolved in 100 mL of ether and cooled to -78 °C, after which a solution of Br₂ in CH₂Cl₂ (499 mg, 3.12 mmol in 6 mL of CH₂Cl₂) was added *via* syringe. The solution was stirred for 2 h while the temperature was allowed to rise from -78 to -20 °C. During this period some dark red sticky solid formed and the solution changed from black to red. The reaction was allowed to continue for 0.5 h at room temperature and the ether was then removed by cannulation. The sticky solid was recrystallized with CH₂Cl₂–ether (1:3 by volume). The mother liquor was separated and the solvent removed from it by evaporation. The residue was then washed with ether to yield dimer **4** as a red solid. Yield 205 mg, 13.4% (Found: C, 19.47; H, 1.03; N, 2.81. Calc. for C₈H₅Br₂NO₂W: C, 19.58; H, 1.03; N, 2.85%).

(PhN)W(CO)₂Br₂(MeCN) 6. Zwitterion 1 (1.20 g, 1.92 mmol) was dissolved in 15 mL of ether and cooled to -78 °C. A solution of Br₂ in CH₂Cl₂ (307 mg, 1.92 mmol in 4 mL of CH₂Cl₂) was added *via* syringe, then 2 mL of MeCN were introduced. Within 10 min the solution changed from black to red and red solid began to form. The solution was stirred for 2 h while the temperature rose from -78 °C to room temperature and then was stirred for 0.5 h at room temperature. The solvent was removed by cannulation and the solid washed with ether (2 × 5 mL) to yield complex **6** as a dark red solid. Yield 830 mg, 81.3%. HRMS (FAB): (M – CO)⁺, found 503.8535, calc. 503.8479.

(PhN)W(CO)₂Br₂(Me₃C₆H₂NH₂) 9. Complex 6 (81 mg, 0.15 mmol) was dissolved in 8 mL of CH₂Cl₂ and Me₃C₆H₂NH₂ (22.5 μ L, 0.15 mmol) added *via* syringe. The solution was stirred for 1 h, during which it changed from dark red to bright red. The solvent was removed under vacuum and the residue extracted with ether. Removal of the ether yielded complex 9 as a red powder. Yield 54 mg, 57.5% (Found: C, 32.57; H, 2.65; N, 4.53. Calc. for C₁₇H₁₈Br₂N₂O₂W: C, 32.62; H, 2.90; N, 4.48%).

(PhN)W(CO)₂Br₂(*i*-C₄H₉NH₂) 10. Complex 6 (71 mg, 0.13 mmol) was dissolved in 10 mL of CH₂Cl₂ and *i*-C₄H₉NH₂ (13.70 μ L, 0.13 mmol) added *via* syringe. The solution was stirred at room temperature for 2 h, during which a bright red color developed. The solvent was removed under vacuum and

Table 5 Crystallographic data for complexes 3 and 4*

3	4
C ₁₆ H ₁₀ Cl ₄ N ₂ O ₄ W	C ₁₆ H ₁₀ Br ₄ N ₂ O ₄ W ₂
803.76	981.60
7.1433(3)	7.1118(1)
10.1298(4)	10.4920(1)
14.9460(7)	15.7374(1)
95.139(1)	95.079(1)
1077.15(8)	1169.66(2)
7669	8334
2475	2685
11.191	16.682
1.13	1.12
3.10/2334	4.90/2423
6.75/2475	12.53/2685
-1.48, 0.98	-1.90, 2.67
	$\begin{array}{c} C_{16}H_{10}Cl_4N_2O_4W\\ 803.76\\ 7.1433(3)\\ 10.1298(4)\\ 14.9460(7)\\ 95.139(1)\\ 1077.15(8)\\ 7669\\ 2475\\ 11.191\\ 1.13\\ 3.10/2334\\ 6.75/2475 \end{array}$

* Details in common: monoclinic, space group $P2_1/n$; Z = 2; $R1 = \Sigma(||F_0| - |F_c||)\Sigma|F_0|$; $wR2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^2$; $S = [\Sigma w(F_0^2 - F_c^2)^2/(n - p)]^2$; n = number of reflections, p = number of parameters refined; $w = 1/[\sigma^2(F_0^2) + (0.0370p)^2 + 0.31p]$, $p = [\max(F_0^2, 0) + 2F_c^2]/3$.

the residue extracted with 15 mL of ether. Removal of the ether yielded complex **10** as a sticky red solid. Yield 44 mg, 60.0%. HRMS (FAB): $(M - 2CO)^+$, found 507.9343, calc. 507.9174.

(PhN)W(CO)Br₂(PMe₃)₂. Dimer 4 (320 mg, 0.33 mmol) was dissolved in 10 mL of CH₂Cl₂ and PMe₃ (5 equivalents) was added *via* syringe. The solution was stirred at room temperature for 2 h, then the solvent was removed and the residue extracted with ether–hexane (2:1). Removal of the solvent yielded the complex as a purple-red solid. Yield 280 mg, 64.0%. HRMS (FAB): (M – CO)⁺, found 586.9229, calc. 586.9167.

[(PhN)W(CO)₂Br(I)]₂. Zwitterion 1 (2.0 g, 3.20 mmol) was dissolved in 15 mL of ether at 0 °C and BrI–CH₂Cl₂ solution (3.20 mL, 1.0 M in CH₂Cl₂) was added *via* syringe. Reaction occurred immediately as evidenced by a change from black to red and the dimer began to precipitate as an orange red solid. The solution was stirred for 2 h and the solvent then removed by cannulation. The resulting solid was washed with ether (2 mL × 3) to yield an orange-red solid. Yield 980 mg, 57% (Found: C, 17.83; H, 1.08; N, 2.43. Calc. for C₈H₅BrINO₂W: C, 17.87; H, 0.94; N, 2.61%).

(PhN)W(CO)₂Br(I)(MeCN). The above dimer (432 mg, 0.40 mmol) was dissolved in 10 mL of MeCN and the solution was stirred at room temperature overnight, during which it became dark red. The solvent was removed under vacuum and the residue recrystallized with CH_2Cl_2 -hexane to yield the complex as a red solid. Yield 252 mg, 54.4%. HRMS (FAB): (M – CO)⁺, found, 549.8339, calc. 549.8355.

X-Ray crystallography

Crystals of complex **4** were obtained by slow recrystallization in CH₂Cl₂-toluene (60:1) at -20 °C. Crystals of complex **3** were obtained from CH₂Cl₂-toluene (20:1) under similar conditions. Data for both compounds were collected at 173 K on a Siemens CCD SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing Mo-Ka radiation ($\lambda = 0.71073$ Å). Cell parameters were refined using 6121 and 5919 reflections from the bromo dimer **4** and chloro dimer **3** data sets, respectively. A hemisphere of data (1381 frames) was collected using the ω -scan method (0.3° frame width). The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability (maximum correction on *I* was <1%). Absorption corrections were applied based on the ψ scan using the entire data sets. Both structures were solved by direct methods in SHELXL 97,¹³ and refined using full-matrix least squares on F^2 . The non-H atoms were refined with anisotropic thermal parameters. All of the H atoms were included in the final cycle of refinement riding on the atoms to which they are bonded. A total of 128 parameters were refined in the final cycle of refinement of each compound using 2423 and 2334 reflections for 4 and 3, respectively, with $I > 2\sigma(I)$ to yield R1 and wR2 of 0.049 and 0.1253 for 4 and 0.031 and 0.067 for 3. Crystallographic data are given in Table 5.

CCDC number 186/1110.

See http://www.rsc.org/suppdata/dt/1998/3373/ for crystallographic files in .cif format.

Acknowledgements

Funding for this research was provided by the Office of Naval Research. K. A. A. wishes to acknowledge the National Science Foundation and the University of Florida for funding the purchase of the X-ray equipment. Y. H. thanks Ms. Karen Torraca and Ms. Jennifer McCusker for helpful discussion.

References

- 1 D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239.
- 2 W. A. Nugent and B. L. Haymore, *Coord. Chem. Rev.*, 1980, 31, 123;
 S. Cenini and G. La Monica, *Inorg. Chim. Acta*, 1976, 18, 279.
- 3 L. W. Francisco, P. S. White and J. L. Templeton, Organometallics, 1997, 16, 2547; S. G. Feng, P. S. White and J. L. Templeton, Organometallics, 1995, 14, 5184; P. J. Pérez, P. S. White, M. Brookhart and J. L Templeton, Inorg. Chem., 1994, 33, 6050; K. R. Powell, P. J. Pérez, L. Luan, S. G. Feng, P. S. White, M. Brookhart

and J. L. Templeton, *Organometallics*, 1994, **13**, 1851; L. Luan, M. Brookhart and J. L. Templeton, *Organometallics*, 1992, **11**, 1433; P. J. Pérez, L. Luan, P. S. White, M. Brookhart and J. L. Templeton, *J. Am. Chem. Soc.*, 1992, **114**, 7928; L. Luan, P. S. White, M. Brookhart and J. L. Templeton, *J. Am. Chem. Soc.*, 1990, **112**, 8190.

- 4 S. T. Massey, N. D. R. Barnett, K. A. Abboud and L. McElwee-White, Organometallics, 1996, 15, 4625.
- 5 C. T. Maxey, H. F. Sleiman, S. T. Massey and L. McElwee-White, J. Am. Chem. Soc., 1992, **114**, 5153; B. A. Arndtsen, H. F. Sleiman, A. K. Chang and L. McElwee-White, J. Am. Chem. Soc., 1991, **113**, 4871; H. F. Sleiman, S. Mercer and L. McElwee-White, J. Am. Chem. Soc., 1989, **111**, 8007; H. F. Sleiman and L. McElwee-White, J. Am. Chem. Soc., 1988, **110**, 8700.
- 6 (a) P. C. McGowan, S. T. Massey, K. A. Abboud and L. McElwee-White, J. Am. Chem. Soc., 1994, 116, 7419; (b) N. D. R. Barnett, S. T. Massey, P. C. McGowan, J. J. Wild, K. A. Abboud and L. McElwee-White, Organometallics, 1996, 15, 424.
- 7 (a) J. E. McCusker, K. A. Abboud and L. McElwee-White, *Organometallics*, 1997, **16**, 3863; (b) J. E. McCusker, J. Logan and L. McElwee-White, *Organometallics*, in press.
- 8 S. W. Johnston, Y.-X. He, T. J. Anderson and L. McElwee-White, unpublished work.
- 9 P. K. Baker, K. R. Flower, H. M. Naylor and K. Voigt, *Polyhedron*, 1993, **12**, 357.
- 10 F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, 5th edn., Wiley-Interscience, New York, 1988, pp. 570–572.
- 11 F.-M. Su, J. C. Bryan, S. Jang and J. M. Mayer, *Polyhedron*, 1989, 8, 1261.
- 12 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1.
- 13 G. M. Sheldrick, SHELXL 97, Program for the refinement of crystal structures. University of Göttingen, 1997.

Paper 8/03989E